Description
Given an array of positive integers arr, return the sum of all possible odd-length subarrays of arr.
A subarray is a contiguous subsequence of the array.
Example 1:
Input: arr = [1,4,2,5,3]
Output: 58
Explanation: The odd-length subarrays of arr and their sums are:
[1] = 1
[4] = 4
[2] = 2
[5] = 5
[3] = 3
[1,4,2] = 7
[4,2,5] = 11
[2,5,3] = 10
[1,4,2,5,3] = 15
If we add all these together we get 1 + 4 + 2 + 5 + 3 + 7 + 11 + 10 + 15 = 58
Example 2:
Input: arr = [1,2]
Output: 3
Explanation: There are only 2 subarrays of odd length, [1] and [2]. Their sum is 3.
Example 3:
Input: arr = [10,11,12]
Output: 66
Constraints:
1 <= arr.length <= 100
1 <= arr[i] <= 1000
Solution
Brute Force
1 |
|
Prefix Sum
- Prefix sum, num[i] represents the sum of 0 ~ i numbers, then num[i] = num[i] + sum(0 ~ i - 1)
- Therefore, you only need to find the odd length (denoted as i) that is less than the length of the arr array, and then calculate the difference between the lengths num[j + i] - num[j] in turn.
1 | # O(n^2) time | O(n) space |